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During the last few years, we have been attempting to design a framework for the 

construct of mathematical knowledge for teaching (MKT) as it might be applied to 
secondary school mathematics.  Working from the bottom up, we began by developing a 
collection of sample situations.  Each situation portrays an incident in teaching 
secondary mathematics in which some mathematical point is at issue.  (For details of 
our approach, see Kilpatrick, Blume, & Allen, 2006.)  Looking across situations, we have 
attempted to characterize the knowledge of mathematics that is beneficial for secondary 
school teachers to have but that other users of mathematics may not necessarily need.  

 
Our initial characterization was much influenced by the work of Deborah Ball and 

her colleagues at the University of Michigan (Ball, 2003; Ball & Bass, 2000; Ball, Bass, & 
Hill, 2004; Ball, Bass, Sleep, & Thames, 2005; Ball & Sleep, 2007; Ball, Thames, & 
Phelps, 2008).  In particular, Ball et al. have partitioned MKT into components that 
distinguish between subject matter knowledge and pedagogical content knowledge 
(Shulman, 1986).  They have identified four components: common content knowledge, 
specialized content knowledge, knowledge of content and students, and knowledge of 
content and teaching (Ball et al., 2004).  And more recently, they have added two 
additional kinds of knowledge: knowledge of curriculum and knowledge at the 
mathematical horizon.  An example of the latter is “being aware that two-digit 
multiplication anticipates the more general case of binomial multiplication later in a 
student’s mathematical career” (Ball, 2003, p. 4).  Figure 1 shows the six components 
and how they are related. 

 

 
Figure 1.  Model of MKT (Ball & Sleep, 2007). 
 

As we worked on developing our own framework, we considered attempts to 
develop similar frameworks (e.g., Adler & Davis, 2006; Cuoco, 1996, 2001; Cuoco, 
Goldenberg, & Mark, 1996; Even, 1990; Ferrini-Mundy, Floden, McCrory, Burrill, & 
Sandow, 2005; McEwen & Bull, 1991; Peressini, Borko, Romagnano, Knuth, & Willis-
Yorker, 2004; Tatto et al., 2008).  We became increasingly concerned that whatever 
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framework we developed needed to reflect a broader, more dynamic view of 
mathematical knowledge. 

 
The Framework for MPT 

 
The philosopher Gilbert Ryle (1949) claimed that there are two types of 

knowledge: The first is expressed as “knowing that,” sometimes called propositional or 
factual knowledge, and the second as “knowing how,” sometimes called practical 
knowledge.  We wanted to capture this distinction and at the same time to enlarge the 
MKT construct to include such mathematical aspects as reasoning, problem solving, and 
disposition.  Consequently, we adopted the term proficiency, which we use in much the 
same way as the term is used in Adding It Up (Kilpatrick, Swafford, & Findell, 2001). 

 
Our process of examining mathematics classroom practices has led us to identify 

three dimensions of mathematical proficiency for teaching (MPT).  The first concerns 
the mathematical work entailed in teaching.  It arises from a consideration of that work 
and the opportunities teachers have to call on their mathematical knowledge 
productively while they are teaching.  We have attempted to identify and characterize 
the particular mathematical knowledge that secondary teachers of mathematics might 
draw upon in their work.  The second dimension concerns the mathematical activities 
with which a teacher needs to be proficient.  Again, we have attempted to identify and 
characterize those activities.  The first two dimensions are needed to achieve the third, 
which concerns the goals of school mathematics and being able to help students reach 
those goals.  We have characterized the goals in terms of the strands of mathematical 
proficiency (Kilpatrick et al., 2001) plus the goal of developing students’ historical and 
cultural knowledge of mathematics.  It should be understood that along each of the 
three dimensions, a teacher’s proficiency can be at any level of development from novice 
to expert.  It should also be understood that these are dimensions of mathematical 
proficiency and not pedagogical proficiency.  An outline of our framework for the 
dimensions is shown in Figure 2. 

 
Proficiency in the Mathematical Work of Teaching (PMWT) 

 
Proficiency in the mathematical work of teaching requires that teachers be able to 

help someone else know and do mathematics.  In Ryle’s (1949) terminology, PMWT 
requires both knowing how and knowing that.  It moves beyond the goal of establishing 
a substantial and continually growing proficiency in mathematics for oneself as a 
teacher to include the goal of effectively helping one’s students develop mathematical 
proficiency. 

 



0903023 3 

Figure 2.  Framework for mathematical proficiency for teaching (MPT). 
 
Not only should teachers of secondary mathematics be able to know and do 

mathematics themselves, but also their proficiency in mathematics must prepare them 
to facilitate their students’ development of mathematical proficiency.  Possessing 
proficiency in the mathematical work of teaching mathematics enables teachers to 
integrate their knowledge of content and knowledge of processes to increase their 
students’ mathematical understanding. 

 
Probe Mathematical Ideas 

 
The first category of PMWT addresses the type of knowledge that is useful for 

investigating and pulling apart mathematical ideas.  Mathematics is dense.  One goal in 
doing mathematics is to compress numerous complex ideas into a few succinct, elegant 
expressions.  These expressions can be used to build additional ideas that will also 
become compressed.  Although mathematical efficiency and rigor are essential if one is 
to engage in complex mathematical thinking, they can also cause confusion, especially 
for those just being initiated into the culture of mathematics. 

 
Teachers need to be able to see complexity in simple ideas and also be able to 

reduce the complexity of mathematical ideas without destroying their integrity–a 
challenging mathematical feat.  That is, they need to be able to reverse the process of 
compression of ideas.  Consider how a teacher might begin the study of complex 
numbers with students who are comfortable working with real numbers.  They may 

1. Proficiency in the Mathematical Work of Teaching (PMWT) 
Probe mathematical ideas 
Access and understand the mathematical thinking of learners 
Know and use the curriculum 
Assess the mathematical knowledge of learners 
Reflect on the mathematical problems of practice 

 
2. Proficiency in Mathematical Activity (PMA) 
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think, “You cannot take the square root of a negative number.”  It may not enter their 
thinking that it is possible to have a number system that is not well ordered, and they 
may believe that all numbers fit somewhere on a one-dimensional number line.  The 
students may have been told this information by their teachers or colleagues, or they 
may have inferred it from their previous mathematical work.  It is difficult, and perhaps 
not wise, for a teacher to provide explicit information about every aspect of a concept.  It 
would be absurd for young students trying to comprehend the notion of multiplication 
of whole numbers, for example, to be warned that multiplication of matrices does not 
exhibit the same properties.  But teachers need to have mathematical knowledge that 
includes a deep knowledge of multiplication and multiplicative structures so they can 
identify essential aspects of multiplication that are appropriate for their students, and 
that do not interfere with the expansion of the concept. 

 
Probing mathematical ideas requires a broad knowledge of mathematical content 

and associated mathematical activities such as defining, representing, justifying, and 
connecting.  Teachers need mathematical knowledge that will help them to pull apart 
mathematical ideas in ways that allow the ideas to be reassembled as students mature 
mathematically.  They need to recognize and honor the conventions and structures of 
mathematics and recognize the complexity of elegant mathematical ideas that have been 
compressed into simple forms. 

 
Access and Understand the Mathematical Thinking of Students 

 
The second category refers to knowledge that helps teachers understand how 

their students are thinking about mathematics.  Accessing students’ thinking is quite 
different from the evaluative process of assessing students’ understanding.  A proficient 
teacher uncovers students’ mathematical ideas, seeing the mathematics from a learner’s 
perspective.  Teachers can gain some access to students’ thinking through written work 
they do in class or at home, but much of that information is highly inferential.  Through 
discourse with students about their mathematical ideas, the teacher can learn more 
about the thinking behind their written products.  Communication among students and 
between them and their teacher is vital for developing their mathematical thinking and 
for helping their teacher shape that thinking.  Classroom interactions play a significant 
role in teachers’ understanding of what their students know and are learning.  It is 
through a particular kind and quality of discourse that implicit mathematical ideas are 
exposed and made more explicit. 

 
Building a practical understanding of and knowledge base of actions for engaging 

students in discourse about important mathematical ideas requires a specialized 
knowledge of mathematics.  Students often discuss mathematics using vague 
explanations or terms that have a colloquial meaning different from their mathematical 
meaning.  A teacher needs the proficiency to probe informal explanations, help students 
focus on essential mathematical points, and help them learn conventional terms.  
Success in such endeavors requires understanding the nuances and implications of 
students’ understanding and recognizing what is right about their thinking as well as 
features of their thinking that lead them to unproductive conceptions. 
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At the same time, the teacher needs to avoid discouraging or distorting the 
students’ mathematical thinking, which often begins with vague, imprecise explorations.  
Achieving such a balance requires the teacher to have an extensive knowledge of 
mathematical terminology, formal reasoning processes, and conventions, as well as an 
understanding of differences between colloquial uses and mathematical uses of terms.  
For example, in a class discussion of Platonic solids, a student might propose a 
conjecture about the number of sides and number of vertices.  Some students may 
interpret sides to mean faces; others may be thinking edges.  A teacher who knows and 
anticipates such potential confusion can use it to motivate the class to reject the 
imprecise term side and define the terms face and edge.  This elaboration can be 
handled without losing sight of the valuable conjecture made by the student. 

 
Know and Use the Curriculum 

 
The third category refers to the mathematical knowledge that helps teachers 

know and use the curriculum to help students connect mathematical ideas and progress 
to a deeper and better grounded mathematics.  How mathematical knowledge is used to 
teach mathematics in a specific classroom or with a specific learner or specific group of 
learners is influenced by the curriculum that organizes the teaching and learning.  A 
teacher’s mathematical proficiency can help make that curriculum meaningful, 
connected, relevant, and useful.  For example, a teacher who is proficient in the 
mathematical work of teaching may have a perspective on the curriculum for the 
concept of area that includes ideas about measure, descriptions of two-dimensional 
space, measures of space under a curve, measures of the surface of three-dimensional 
solids, infinite sums of discrete regions, operations on space and measures of space, 
foundations of the geometric properties of area, and useful applications involving area.  
This perspective on the curriculum is very different from that of someone who thinks of 
area only in terms of formulas for polygonal regions. 

 
Mathematical proficiency for knowing and using the curriculum in teaching 

requires a teacher to identify foundational or prerequisite concepts that enhance the 
learning of a concept as well as how the concept being taught can serve as a foundational 
concept for future learning.  The teacher needs to know how the concept fits each 
student’s learning trajectory.  The teacher also needs to be aware of common 
mathematical misconceptions and how those misconceptions may sometimes arise from 
instruction.  Proficient mathematics teachers understand that there is not a fixed order 
for learning mathematics but rather multiple ways to approach a mathematical concept 
and to revisit it.  Mathematical concepts and processes evolve in the learner’s mind, 
becoming more complex and sophisticated with each iteration.  Mathematical 
proficiency prepares a teacher to enact a curriculum that not only connects 
mathematical ideas explicitly but also develops a disposition in students so that they 
expect mathematical ideas to be connected and an intuition so that they see where those 
connections might be (Cuoco, 2001). 

 
A teacher proficient in the mathematical work of teaching understands that a 

curriculum contains not only mathematical entities but also mathematical processes for 
relating, connecting, and operating on those entities (National Council of Teachers of 
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Mathematics, 1989, 2000).  A teacher must have such proficiency to set appropriate 
curricular goals for his or her students (Adler & Davis, 2006).  For example, a teacher 
needs special mathematical knowledge to select and teach functions in a way that helps 
students build a basic repertoire of functions (Even, 1990). 

 
Assess the Mathematical Knowledge of Learners 

 
The fourth category concerns knowledge that enables the teacher to assess or 

evaluate students’ mathematical understanding.  Teachers need to recognize student 
errors and be able to analyze those errors to see how they are related.  They need to be 
able to design tasks that will assist them in evaluating the students’ depth of 
understanding.  All students bring their own previous experiences into a mathematics 
class, and each lesson provides them with opportunities to develop their mathematical 
knowledge through a variety of learning tasks.  Each task also provides the teacher with 
opportunities to observe what students understand and to identify their errors.  
Assessing students’ mathematical knowledge involves much more than assessing a 
student’s ability to follow a procedure.  The teachers’ knowledge of the mathematical 
work of teaching should help them identify essential components of mathematical 
concepts, enabling them to create tasks that assess students’ understanding and ability 
to use and connect mathematical ideas. 

 
Many errors arise from students’ failure to appreciate the consequences of 

expanding or constraining the set of elements under consideration.  Teachers may fail to 
make the domain of a function explicit or to point out different usages of a term.  For 
example, students often confuse finding the inverse of a function with finding its 
reciprocal, or multiplicative inverse.  Assessing and analyzing such confusion may not 
only help students correct a common error but also highlight the problem of not 
explicitly identifying the operation (composition) associated with finding the inverse 
function.  Also, students’ limited understanding of a procedure may inhibit increasing 
that understanding when the set of elements over which the procedure has been defined 
and used is extended.  Treating exponentiation as repeated multiplication, for example, 
may create conflict for students when they are asked to consider a number raised to a 
fractional or irrational power. 

 
Proficiency in assessing the mathematical knowledge of learners requires that 

teachers understand the structure of mathematical systems and are aware of what 
needs to be made explicit in class discussions and tasks.  Without such understanding 
and awareness, a teacher may assume that because students happen to be using 
mathematical terms correctly, they know the structures and operations to which the 
terms apply. 

 
Reflect on the Mathematical Problems of Practice 

 
The fifth category concerns knowledge that enables teachers to analyze their 

mathematics teaching in a way that leads to enhancing their own mathematical 
knowledge.  There are a many ways to reflect upon one’s teaching, but it is important to 
reflect on the work of teaching through a mathematical lens.  Did the tasks help students 
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focus on the core mathematical ideas?  Did I use conventional mathematical vocabulary 
and notation?  Why or why not?  What did my instruction imply about the nature of 
mathematics?  How can I connect my lesson to previously learned mathematics?  
Thoughtful reflection on problems of practice can be reconsideration of a lesson just 
taught, or it can be part of the planning for a future lesson.  It may occur as the teacher 
interprets the results of a formal assessment, or it may be prompted by a textbook 
treatment of a topic.  Whatever its origin, reflection needs to include thinking about the 
mathematics of the lesson as well as its pedagogical features. 

 
Teachers are often reflecting about their teaching as they teach—as they are 

making split-second mathematical and pedagogical decisions.  A teacher’s decision 
about how to proceed after accessing student thinking depends on many factors, 
including the mathematical goals of the lesson.  It is valuable to revisit these quick 
reflections and decisions when there is time to think about how particular problems of 
practice might inform future teaching.  The goal is not to avoid mathematical problems 
while teaching but rather to reflect on how such problems can lead to better teaching 
and better mathematical understanding. 

 
Proficiency in Mathematical Activity (PMA) 

 
Underpinning knowledge of mathematical ideas are the processes that evidence 

that knowledge and the objects on which those processes are performed.  Proficiency in 
mathematical activity describes the mathematical activities that display the knowledge 
of mathematical processes and the mathematical objects that are the targets of those 
processes.1  Our work over the past few years has centered on identifying the 
opportunities and venues available to a secondary teacher to call on his or her 
mathematical knowledge in the service of teaching and on developing descriptions of the 
mathematics that might be called on in each of those settings.  We call these 
descriptions situations.  Through our analysis of the situations we developed, we have 
identified general types of mathematical activities that underpin the mathematics that 
secondary mathematics teachers can productively use in their teaching.  Through a 
perspective on mathematical activity, we acknowledge that mathematical knowledge has 
a dynamic aspect by describing actions taken upon mathematical objects.  Mathematical 
objects include functions, numbers, matrices, and so on.  One might think of them as the 
nouns of mathematics.  The categories in the dimension PMA describe the verbs of 
secondary mathematics teaching—the actions one uses with these mathematical objects. 

 
Recognize Structure and Conventions 

 
Prior to instruction on algebra, school mathematics (usually presecondary) deals 

with integers and rational numbers.  These sets have their own algebraic structure, and 
students in presecondary classrooms are exposed to those structures through their 
interaction with systems of whole numbers and fractions.  At the secondary level, the 
rate of introduction of new mathematical systems increases, and the need to account for 
                                                
1 This notion of mathematical knowledge through the lens of mathematical processes and products has 
underpinned the work of the Mid-Atlantic Center on investigating the mathematical knowledge of 
teachers and how they draw on that knowledge in their teaching (Zbiek, Conner, & Peters, 2008). 
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differences in structure of different mathematical systems becomes more pronounced.  
The structure of algebra is revealed as students move from the study of rational 
numbers to the study of real and complex numbers, variables, and functions.  
Operations once performed only on rational numbers are extended to new objects such 
as polynomials.  New entities such as the inverse function and composition of functions 
are introduced.  In geometry, analytic and other non-Euclidean geometries are 
introduced.  With each new set of operations and numbers come new properties.  
Secondary mathematics teachers need to be comfortable with differences in properties 
among mathematical systems so that they can help their students focus on the structure 
rather than solely on the procedures used in working within that structure.  With new 
structures come new properties and new conventions.  In algebra, new notations such as 
(f ◦  g)(x) and summation notation succinctly portray both processes and objects.  
Familiar notation such as the exponent -1 (e.g., x-1 and f-1) is used in different ways 
depending upon the context.  Teachers who recognize similar notation and who are 
aware of different meanings for notation that appears to be the same need also to be 
able to identify and explain the conditions under which particular meanings for the 
notation are appropriate.  Definitions are conventions as well.  Secondary mathematics 
teachers with a refined perspective on definition will be able to lead their students in 
developing sophisticated mathematical arguments involving the mathematical object 
being defined. 

 
Secondary mathematics teachers draw on their ability to recognize and 

distinguish between mathematical properties, constraints, or structure in a given 
mathematical entity or setting, or across instances of a mathematical entity.  By 
recognizing structural similarity or differences, they seek and make connections 
between (features of) representations of the same mathematical object or different 
methods for solving problems (e.g., they recognize the structural similarities in the 
Euclidean algorithm and the long division algorithm), between mathematical objects of 
different classes (e.g., they recognize that properties of a set are not inherited when the 
set is extended to a superset), or between the same objects in different systems (e.g., 
they recognize the difference in solutions when solving an equation in the real number 
system and in the complex number system).  They recognize conventions in notation 
and distinguish among the meanings of notations that are similar in appearance.  It is in 
the secondary grades that this attention to structure and convention begins to emerge in 
school mathematics curricula.  Teachers of secondary mathematics can draw on their 
knowledge of structure and convention to direct students’ attention to the nuances of 
working in different systems and communicating about results in those systems. 

 
Secondary algebra teachers apply their knowledge of algebraic structure (e.g., 

field properties, properties of equivalence relations, and properties of equality) coupled 
with their ability to think about their students’ mathematical thinking to organize 
instruction on algebraic transformations.2  Recognizing algebraic structures allows 
teachers to identify potential symbolic rules and to test them.  For example, teachers 
who are aware that the truth of f(a) + f(b) = f(a + b) depends on the nature of the 

                                                
2 Algebraic transformations such as the production of equivalent expressions and equivalent equations are 
the core of many school algebra courses. 
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function f, and that students tend to apply this “student’s distributive property” 
indiscriminately, can alert their students to the need to be wary of overgeneralization of 
this linearity property and test the validity of each potential rule.  Teachers who are 
aware that familiar operations do not have the same meaning when applied to different 
mathematical objects and structures will know not to generalize properties of 
multiplication over the set of real numbers to multiplication over the set of matrices, for 
example.  They will also know that they need to exercise caution in extending the rules 
of exponents, developed and proved for natural number exponents, to negative, rational, 
real, or complex exponents.  Secondary mathematics teachers’ recognition of structure 
underpins their ability to determine how two classes of mathematical objects are 
related.  This ability allows them to recognize the similarity of the structure of switching 
circuits, conjunction and disjunction of sets, and Boolean algebra, and to apply the 
properties of Boolean algebras to these other settings. 

 
Connect Within and Outside the Subject 

 
Secondary mathematics introduces more content from more branches of 

mathematics than mathematics in the elementary grades.  Systematic study of 
geometry, algebra, statistics, probability, discrete mathematics, and the calculus extends 
students’ mathematical knowledge, and teachers find it useful to be able to make 
connections among principal mathematical generalizations, definitions, and objects 
across these areas of mathematics.  Connecting within mathematics requires teachers to 
have a working knowledge of both the characteristics and structure of the mathematics 
they are teaching and how that mathematical topic relates to other areas of 
mathematics.  For example, students may study transformations using paper folding to 
investigate reflections, rotations, translations, and glide reflections.  When students are 
studying the Cartesian plane, the teacher should be able to quantify the transformations.  
Matrices and matrix operations can be used to transform one figure into another.  
Connecting within mathematics also means being able to connect student-generated 
algorithms to the standard algorithm.  Rewriting equations from the Cartesian 
coordinate system into polar coordinates goes beyond being able to work in both 
systems and illustrating the similarities between the two.  Teaching even elementary 
algebra requires of teachers not only the recognition of the Cartesian connection, the 
knowledge that the set of points that lie on the graph of a function such as f(x) = 3x2 − 8x 
+ 2 are the entire set of (x, y) coordinates that satisfy the equation, but also the 
knowledge that this connection is not an easy let alone automatic one for students to 
make.  Teachers can provide rich and challenging environments for their students when 
they are able to move smoothly from question to question, both fielding student 
questions and posing challenges that require students to connect mathematical ideas.  
For example, a teacher might ask: “What sort of numbers do different expressions in x 
generate as the domain of x changes?  Why is the product of three consecutive integers a 
multiple of 6?  How does factoring a quadratic connect to factoring a number?” 

 
Connecting to areas outside of mathematics requires teachers to have a 

disposition to look for mathematics outside of their classroom, both within and beyond 
the boundaries of the school walls and to seek mathematical explanations for real world 
quantitative relationships.  Today’s electronic technology offers multiple opportunities 
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for such explorations.  For example, video games employ matrix operations to animate 
images on the screen through geometric transformations.  Designers of automobiles use 
Bezier curves to render pictures of new designs for cars.  Teachers who introduce ideas 
such as these to students can not only engage them in simulating what those who use 
mathematics in real life do but also help them to understand the mathematical ideas 
shaping the world in which they live.  Statistical considerations are another robust area 
for quantitative exploration.  For example, it is interesting to know that The Federalist 
Papers were written by three different people using the pseudonym Publius, and 
statistical tests have been used to estimate who authored which paper.  The point is not 
that there is some ordained list of applications that a teachers needs to know, but rather 
that there are intriguing topics that teachers can explore with their students by applying 
mathematics at a secondary level and that teachers should be willing and able to seek 
out the resources to investigate these topics.  Connecting within and outside 
mathematics means looking for applications of mathematics as well as situations from 
which to extract mathematics.  Every teacher may not need to know something about a 
particular connection, but all teachers need to know the properties of the mathematical 
entities about which they are teaching well enough to recognize an application when 
they see it.  This recognition involves seeing the properties of the mathematical entities 
well enough to match them to the situation (Zbiek & Conner, 2006).  Identifying and 
matching these properties are the action the teacher must own. 

 
Represent 

 
Inherent in the task of teaching is the need to create representations for 

mathematical entities from given structures, constraints, or properties.  At all levels of 
mathematics, teachers represent mathematical objects using different types of 
representations.  For each representation they use, teachers communicate about it and 
interpret it in the context of what it signifies, orchestrate movements between 
representations, and craft analogies to describe representations, objects, and 
relationships.  They describe mathematical objects using numbers, symbols, pictures, 
words, physical objects, and other means.  It is important for teachers not only to be 
adept at creating and interpreting representations but also to recognize that students 
may view the representation as the mathematical object of interest: Students may view 
the graph of a linear function as the line, and they may view the sketch of a circle as the 
circle itself.  For example, when one teacher asked his students whether it was possible 
for a linear function to have neither x-intercepts nor y-intercepts, one of his students 
replied that it was possible.  The student had drawn the axes with short line segments 
and had observed that the line segment representing the line did not intersect either 
segment representing the axes.  The student was treating the representation of the lines 
involved as if they were the lines themselves. 

 
Teachers also need to be able to analyze each new representation, recognizing 

what features it captures of the mathematical object and what features it does not 
capture.  They need to be able to help students develop a critical eye in choosing and 
interpreting representations and in recognizing how a feature in one representation is 
related to what may appear to be a completely different feature in another 
representation.  Each representation affords different views of the mathematical object, 
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but several different representations can highlight the same feature.  Teachers need to 
develop a repertoire of representations that are helpful in answering particular kinds of 
questions: For example, a verbal representation such as SOHCAHTOA may help 
students remember the ratios for different trig ratios, and a short description such as 
“slope is rise over run” may help students calculate the slope for a given linear graph.  
Teachers also need to recognize that a given feature can be interpreted in different ways; 
for example, seeing the “vertical line test” to determine whether a relation is a function 
as an indicator of the unique output requirement of a function instead of simply a trick 
to help answer questions about functions (e.g., students viewing the graph of x = y2 may 
claim that it is not a function without entertaining the possibility that x could be the 
dependent variable). 

 
Teachers who can represent well should be able to switch smoothly between 

representations and know that each representation emphasizes different aspects of the 
same object.  With access to a broad range of representational forms, teachers can use or 
create equivalent representations to reveal different information or to foreground a 
particular concept (e.g., looking at table rather than graph to quantify rate of change; 
looking at derivative for rate of change in a numerical situation; looking at the graph of a 
function to highlight local extrema).  Teachers’ repertoires of representations help them 
select models for given number types or operations (e.g., multiplication of rational 
numbers, addition of complex numbers).  In a geometry class, a teacher might use 
physical objects for quadrilaterals and other shapes while also having students explore 
what conditions must be met to create similar shapes on a program such as Geometer’s 
Sketchpad (GSP).  Teachers use analogies and language to describe functions as well, 
using function machines or other analogies to impart some of the qualities of a function.  
Teachers represent numbers in different mathematical settings.  For example, the 

mathematical meaning of 
 

a

b
 (for real numbers a and b, with b ≠ 0) arises in several 

different mathematical settings, including slope of a line, direct proportion, Cartesian 

product, factor pairs, and area of rectangles.  In explaining a definition of 
 

a

b
, a teacher 

might choose slope of a line as a setting to illustrate the need for b ≠ 0.  In each 
representational setting, teachers need to be able to use mathematically precise 
language to communicate to students about the representations the students generate as 
well as about the ones they are given. 

 
Constrain and Extend 

 
Cuoco (1996) argues that “mathematicians talk small and think big.”  Teachers 

who generalize are able to test conjectures, expand the domains of rules and procedures, 
and adapt mathematical ideas to new situations.  If a conjecture is made in a classroom, 
a teacher will be able to test the conjecture with different domains or sets of objects.  For 
example, a student may state that multiplication returns a number equal to or larger 
than either initial factor.  A teacher should be able to test whether such a conjecture 
holds true in every domain.  Similarly, a teacher should be able to explain why rules may 
or may not work in new domains.  Although a teacher might demonstrate the exponent 
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rules with rational exponents, the teacher should also be able to demonstrate why such 
rules still work for complex exponents. 

 
Teachers are frequently called on to constrain or extend the domain, argument, 

or class of objects for which a mathematical statement is or remains valid while 
preserving the structure of the mathematical statement (e.g., extending the concept of 
absolute value to a modulus definition as the domain is extended from real to complex 
numbers; extending the object “triangle” from Euclidean to spherical geometry).  They 
should be able to interpret certain mathematical conditions or constraints that are 
relevant to a mathematical activity and recognize when it is useful to relax or constrain 
mathematical conditions (e.g., recognizing that it is not true that any number raised to 
the 0th power is equivalent to 1).  They make mathematical generalizations by extending 
the domain to which a set of properties apply, thus identifying a larger set of instances 
to which the properties apply.  With these capacities, teachers can create mathematical 
extensions to given problems and questions and can recognize the implications of a 
extending or constraining the domain, argument, or class or objects under 
consideration. 

 
With secondary mathematics as the bridge between prealgebra mathematics and 

collegiate mathematics, secondary mathematics teachers are often challenged to explore 
the consequences of imposing or relaxing constraints.  To constrain in mathematics 
means to define the limits of a particular mathematical idea.  When finding the inverses 
of a function, one must sometimes constrain the domain if one wants the inverse to be a 
function as well.  The inverse of f(x) = sin x is a function only if the new domain is 
restricted.  Constraints can be removed or replaced to explore the resulting new 
mathematics.  When mathematicians tinkered with the constraint of Euclid’s fifth 
postulate, new geometries were formed.  When one removes the constraint of the plane 
in using Euclidean figures, the mathematics being used changes as well.  Secondary 
mathematics teachers regularly encounter situations in which to provide a suitable 
response, they must tailor a generalization so that it can reasonably be extended to a 
larger domain of applicability.  For example, they may have to analyze the extent to 
which properties of exponents generalize from natural number exponents to rational 
number or real number exponents, or they may find it useful to generate an example of a 
situation for which multiplication is not commutative.  Teachers with an understanding 
of the mathematics their students will encounter in further coursework can structure 
arguments so that they extend to a more general case.  For example, teachers who 
recognize that a graphical approach to solving polynomial equations is far more 
generalizable than the usual set of polynomial factoring techniques may tend to provide 
their students with a more useful technique. 

 
Another example of constraining occurs when teachers constrain the domain 

within which the class is to work.  Some geometric proofs are simple in coordinate 
geometry.  However, if the teacher constrains all proving to synthetic geometry, then 
techniques must be used that display different mathematics than would be seen if the 
proof were performed only one way. 

 



0903023 13 

Generalize 
 
Secondary mathematics teachers are constantly called on to apply and generate 

mathematical generalizations, and they need to evaluate the truth of generalizations that 
their students propose.  The process of generalizing is intimately related to constraining 
and extending.  Generalizing is the act of extending the domain to which a set of 
properties apply from multiple instances of a class or from a subclass to a larger class of 
mathematical entities, thus identifying a larger set of instances to which the set of 
properties applies.  Students often state generalizations in an overly broad way, and so 
their teachers need to be adept at constraining the domain of proposed generalizations 
so as to make the statement true.  Secondary mathematics teachers need to be able to 
articulate needed constraints in ways that build on their students’ understanding.  It will 
not help students to hear the most accurate revision of their generalization if that 
revision is stated in terms of mathematical entities with which they are not familiar. 

 
Model 

 
A popular description of the modeling process starts with a real-world problem 

that is translated into a formal mathematical system.  Within the formal system, the 
model is manipulated until a solution is found.  The solution is mapped back to the real 
world to be tested with the problem.  Schoenfeld (1994) points out that the validity of 
the ensuing analysis depends on the accuracy of both of the mappings to and from the 
formal system.  It is important to note that the issue is one of fit rather than absolute 
correctness.  Modeling can be seen as a recursive process.  If a solution does not fit the 
real-world context well enough, aspects of the model, such as initial conditions that are 
assumed, could be changed to form a new model.  Programs such as GSP allow 
geometrical models to be created to test hypotheses.  Statistical modeling provides 
predictions when dealing with data points.  Monte Carlo simulations model outcomes 
using random inputs.  Note that we see modeling as involving a context outside of 
mathematics as distinct from representing, which resides wholly within mathematics. 

 
Secondary mathematics teachers who know the difference between modeling a 

situation and applying a piece of mathematics to a realistic situation and who also know 
that what constitutes a “good” or “good enough” model depends on the setting will be 
better able to engage their students in the modeling process than teachers lacking such 
knowledge.  Every secondary mathematics teacher would benefit from understanding 
modeling as involving both mathematical and statistical concepts.  Zbiek and Conner 
(2006) describe the action of mathematical modeling as including the processes of 
specifying (“identifying the conditions and assumptions … of the real-world context to 
which the modeler will attend as he or she mathematizes the situation” [p. 99]), 
mathematizing (creating or acknowledging mathematical properties and parameters … 
that correspond to the situational conditions and assumptions that have been specified” 
[p. 99]), interpreting (“putting the mathematical conclusion in context” [p. 103]), and 
examining (“comparing the real-world conclusion with the situation while considering 
the modeling purpose to ensure the real-world conclusion aligns with the realistic 
situation in light of the modeling goal” [p. 104]).  Teaching secondary students about 
mathematics in real-world settings requires that teachers recognize the properties of 
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mathematical entities in such situations.  They should be able to see a property of a 
mathematical entity in a situation, they should notice characteristics of situations that 
they can associate with a mathematical entity, and they should be able to judge the 
reasonableness of a mathematical result within a context. 

 
Exemplify 

 
Teachers’ daily work involves them in creating and using examples, nonexamples, 

and counterexamples for mathematical objects, generalizations, or relationships.  The 
creation of counterexamples requires knowing the properties of the concepts involved in 
a proposed generalization and variations of those properties so that a concept can be 
selected for which the generalization is not true.  For example, the generalization that 
multiplication is always commutative can be shown to be false when multiplication is 
defined over matrices—this is also an example of the process of constraining or 
extending.  Creating examples and nonexamples requires understanding the properties 
required and the implications of those properties.  For example, creating a polynomial 
that does or does not factor over the reals is assisted by knowing solutions to 
polynomials of degree four or higher.  Similarly, the ability to create a graph with 
particular characteristics is helped by knowledge of what the derivative and extrema of a 
symbolically stated function indicate about the shape of its graph.  Teachers’ work is 
enabled by their ability to choose examples that serve their purposes as well as their 
ability to generate specific examples from a set of conditions or from an abstract idea. 

 
Define 

 
Teachers of secondary mathematics use definitions in their daily work.  They 

need to be able to appeal to a definition to resolve mathematical questions, and they 
need to be able to reason from a definition.  Less frequently, teachers need to create 
definitions and to assess the definitions that students create or propose.  Creating a 
definition requires identifying and articulating a combination of a set of characteristics 
and the relationships among these characteristics in such a way that the combination 
can be used to determine whether an object, action, or idea belongs to a class of objects, 
actions, or ideas. 

 
An example of the importance of definition occurred in the context of work with a 

symbolic manipulation calculator.  When a seventh grader used a symbolic calculator to 

evaluate the function 

€ 

f (x) = x −10  at x = -5, he was surprised to see that the calculator 

returned a real value (Heid, Hollebrands, & Iseri, 2002).  A teacher with knowledge of a 
modulus definition of absolute value could have steered the student to reconsider his 
working definition of absolute value as the “positive value” of a number. 

 
Justify 

 
Teaching mathematics well requires justifying mathematical claims through 

logical connections or deductions among mathematical ideas.  Teachers of secondary 
mathematics  need to be comfortable with a range of strategies for mathematical 
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justification, including both formal justification and informal arguments.  Formal 
justification, or proof, requires basing arguments on a logical sequence of definitions, 
axioms, and known theorems.  Teachers need a different sort of justification ability 
than other users of mathematics.  They need to be able to understand and formulate 
different levels and types of mathematically and pedagogically viable justifications and 
proofs.  It is not always the case that claims to be proved arrive on a teacher’s desk fully 
formed—the evidence and claim may originate from a student’s observations.  In this 
and other settings, secondary mathematics teachers are called on to consider or 
generate empirical evidence, formulate conjectures from that evidence, and prove or 
disprove those conjectures deductively.  They need to be able to formulate and 
structure their arguments at a range of appropriate levels, they need to be able to state 
assumptions on which a valid mathematical argument depends, and they need to 
recognize the need to specify assumptions in an argument. 

 
Positioning themselves to accomplish all of the above requires of secondary 

mathematics teachers a breadth of experience and expertise with justification as well as 
with proof.  Teachers need to be on the alert for special cases (e.g., any number raised 
to the zero power is not always 1), they need to recognize an exhaustive list of cases, and 
they need to recognize the limitations of reasoning from diagrams.  Not only do they 
need experience with justification and proof, but they also need to be able to craft 
explanations that communicate aspects of justification at an appropriate level.  For 
example, they need to be able to explain why a process does not generalize when 
applied to a different entity, and they need to be able to explain the logic or organizing 
idea of a formal proof to students without extensive (or any) experience in constructing 
proofs.  Examples arising from our situations include: 

 
1. Constructing an array of explanations for why the sum of the first n natural 

numbers is , including appealing to cases, by making strategic choices 

for pair-wise grouping of numbers and by appealing to arithmetic sequences 
and properties of such sequences. 

 
2. Arguing by contradiction (excluded middle): To prove that if the opposite 

angles of a quadrilateral are supplementary, then the quadrilateral can be 
inscribed in a circle, construct a circumcircle about three vertices of a 
quadrilateral and argue that if the fourth vertex can be in neither the interior 
nor the exterior of the circle, then the fourth vertex must be on the 
circumcircle, and therefore the quadrilateral can be inscribed in a circle. 

 
Proficiency in Fostering Mathematical Goals (PFMG) 

 
The principal goal of secondary school mathematics is to develop all facets of the 

learners’ mathematical proficiency, and the teacher of secondary mathematics needs to 
be able to help students with that development.  Such proficiency on the teacher’s part 
requires that the teacher not only understand the substance of secondary school 
mathematics deeply and thoroughly but also know how to guide students toward greater 
proficiency in mathematics.  We have divided PFMG into six strands, shown in Figure 2, 
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to capture the multifaceted nature of the goals for teaching secondary school 
mathematics. 

 
There is a range of proficiency in each strand, and a teacher may become 

increasingly proficient in the course of his or her career.  At the same time, certain 
categories may involve greater depth of mathematical knowledge than others.  For 
example, conceptual understanding involves a different kind of knowledge than 
procedural fluency, though both are important.  Only rote knowledge is required in 
order to demonstrate procedural fluency in mathematics.  Conceptual understanding, 
however, involves (among other things) knowing why the procedures work. 
 
Conceptual Understanding 

 
Conceptual understanding is sometimes described as the “knowing why” of 

mathematical knowledge.  A person may demonstrate conceptual understanding by 
such actions as deriving needed formulas without simply retrieving them from memory, 
evaluating an answer for reasonableness and correctness, understanding connections in 
mathematics, or formulating a proof. 

 
Some examples of conceptual understanding are the following: 
 
1. Knowing and understanding where the quadratic formula comes from 

(including being able to derive it), 
2. Seeing the connections between right triangle trigonometry and the graphs of 

trig functions, and 
3. Understanding how the introduction of an outlying data point can affect mean 

and median differently. 
 

Procedural Fluency 
 
A person with procedural fluency knows some conditions for when and how a 

procedure may be applied and can apply it competently.  Procedural fluency alone, 
however, would not allow one to independently derive new uses for a previously learned 
procedure, such as completing the square to solve ax6 + bx3 = c.  Procedural fluency can 
be thought of as part of the “knowing how” of mathematical knowledge.  Such fluency is 
useful because the ability to quickly recall and accurately execute procedures 
significantly aids in the solution of mathematical problems. 

 
The following are examples of procedural fluency: 
 
1. Recalling and using the algorithm for long division of polynomials, 
2. Sketching the graph of a linear function, 
3. Finding the area of a polygon using a formula, and 
4. Using key words to translate the relevant information in a word problem into 

an algebraic expression. 
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Strategic Competence 
 
Strategic competence requires procedural fluency as well as a certain level of 

conceptual understanding.  Demonstrating strategic competence requires the ability to 
generate, evaluate, and implement problem-solving strategies.  That is, a person must 
first be able to generate possible problem-solving strategies (such as utilizing a known 
formula, deriving a new formula, solving a simpler problem, trying extreme cases, or 
graphing), and then must evaluate the relative effectiveness of those strategies.  The 
person must then accurately implement the chosen strategy.  Strategic competence 
could be described as “knowing how,” but it is different from procedural fluency in that 
it requires creativity and flexibility because problem-solving strategies cannot be 
reduced to mere procedures. 

 
Specific examples of strategic competence are the following: 
 
1. Recognizing problems in which the quadratic formula is useful (which goes 

beyond simply recognizing a quadratic equation or function), and 
2. Figuring out how to partition a variety of polygons into “helpful” pieces so as 

to find their areas. 
 

Adaptive Reasoning 
 
A teacher or student with adaptive reasoning is able to recognize current 

assumptions and adjust to changes in assumptions and conventions.  Adjusting to these 
changes involves comparing assumptions and working in a variety of mathematical 
systems.  For example, since they are based on different assumptions, Euclidean and 
spherical geometries are structurally different.  A person with adaptive reasoning, when 
introduced to spherical geometry, would consider the possibility that the interior angles 
of a triangle do not sum to 180°.  Furthermore, he or she would be able to construct an 
example of a triangle, within the assumptions of spherical geometry, whose interior 
angles sum to more than 180°. 

 
Adaptive reasoning includes the ability to reason both formally and informally.  

Some examples of formal reasoning are using rules of logic (necessary and sufficient 
conditions, syllogisms, etc.) and structures of proof (by contradiction, induction, etc.).  
Informal reasoning may include creating and understanding appropriate analogies, 
utilizing semi-rigorous justification, and reasoning from representations. 

 
Examples of adaptive reasoning are as follows: 
 
1. Recognizing that division by an unknown is problematic, 
2. Working with both common definitions for a trapezoid, 
3. Operating in more than one coordinate system, 
4. Proving an if-then statement by proving its contrapositive, and 
5. Determining the validity of a proposed analogy. 
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Productive Disposition 
 
Those people with a productive disposition believe they can benefit from 

engaging in mathematical activity and are confident that they can succeed in 
mathematical endeavors.  They are curious and enthusiastic about mathematics and are 
therefore motivated to see a problem through to its conclusion, even if that involves 
thinking about the problem for an extended time so as to make progress.  People with a 
productive disposition are able to notice mathematics in the world around them and 
apply mathematical principles to situations outside the mathematics classroom.  They 
possess Cuoco’s (1996)“habits of mind.” 

 
Examples of productive disposition are as follows: 
 
1. Noticing symmetry in the natural world, 
2. Persevering through multiple attempts to solve a problem, and 
3. Taking time to write and solve a system of equations for comparing phone 

service plans. 
 

Historical and Cultural Knowledge 
 
Having knowledge about the history of mathematics is beneficial for many 

reasons.  One prominent benefit is that a person with such knowledge will likely have a 
deeper understanding of the origin and significance of various mathematical 
conventions, which in turn may increase his or her conceptual understanding of 
mathematical ideas.  For example, knowing that the integral symbol ∫ is an elongated s, 
from the Latin summa (meaning sum or total) may provide a person with insight about 
what the integral function is.  Some other benefits of historical knowledge include an 
awareness of which mathematical ideas have proven the most useful in the past, an 
increased ability to predict which mathematical ideas will likely be of use to students in 
the future, and an appreciation for current developments in mathematics. 

 
Cross-cultural knowledge (i.e., awareness of how people in various cultures or 

even in various disciplines conceptualize and express mathematical ideas) may have a 
direct impact on a person’s mathematical understanding.  For example, a teacher or 
student may be used to defining a rectangle in terms of its sides and angles, but people 
in some non-Western cultures define a rectangle in terms of its diagonals.  Being able to 
conceptualize both definitions can strengthen one’s mathematical proficiency. 

 
The following are additional examples of historical and cultural knowledge: 
 
1. Being familiar with the historic progression from Euclidean geometry to 

multiple geometric systems, 
2. Being able to compare mathematicians’ convention of measuring angles 

counterclockwise from horizontal with the convention (used by pilots, ship 
captains, etc.) of indicating directions in terms of degrees clockwise from 
North, 
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3. Understanding similarities and differences in algorithms typically taught in 
North America and those taught elsewhere, 

4. Knowing that long-standing “open problems” in mathematics continue to be 
solved and new problems posed, and 

5. Recognizing the increasing use of statistics in the business world. 
 

Conclusion 

Figure 3 shows that mathematical goals and activities can be crossed to allow 
classification of specific activities by goal (although it should be understood that most 
activities involve multiple goals and hence multiple classifications).  The combination of 
goals and activities rests on a context provided by the mathematical work of teaching.  
We anticipate that the current framework will be modified and extended as we continue 
to examine the mathematical practices of secondary mathematics teaching.  
Nonetheless, it enables us to analyze the situations we have in hand as well as 
embodying our current thinking about the mathematical proficiency that teachers need. 
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Figure 3.  The three dimensions of mathematical proficiency for teaching (MPT). 
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